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Abstract—This paper introduces Sieve, a generalizable filtering
approach towards prefetching that aims to learn and prevent
mispredictions. We build on the previous work of Perceptron-
Based Prefetch Filtering [2] and Sandbox Prefetching [9]. We first
provide a generalizable implementation of the perceptron filter
that can be applied with any underlying prefetcher. Then, we en-
able configuring our filter with multiple underlying prefetchers at
once, placing an emphasis on simultaneous evaluation of multiple
active prefetchers. Finally, we experiment with providing custom
feature input to underlying prefetchers, and sandboxing, and
integration between the prefetch filter and the cache replacement
policy. Overall, our work seeks to tackle the fundamental trade-
off of coverage and accuracy in prefetcher design.

We describe our design and evaluate it in the last-level cache
on 13 parallel application benchmarks of the GAP and PARSEC
workload suites. In the single-prefetcher configuration, we apply
Sieve’s filtering mechanism to three prefetchers, and compared
to a no-prefetching baseline, we improve performance by 1.73%-
3.08%, which outperforms these prefetchers without filtering.
In the multi-prefetcher configuration, we apply Sieve’s filtering
mechanisms to the same three prefetchers, and we find that Sieve
again outperforms with a 3.39% speedup over no-prefetching.
For a 4-core system, the multi-prefetching configuration of Sieve
is able to improve IPC by 4.15%.

I. INTRODUCTION

Memory latency is a major factor limiting CPU perfor-
mance. Previous prefetching work has attempted to mitigate
this issue by learning patterns in memory accesses in order
to predict and fetch the next demand access earlier to hide
memory latency and improve program performance. However,
these prefetching techniques are not 100% accurate, resulting
in mispredicted prefetched lines occupying space in the cache
and wasting memory bandwidth.

Previous work has focused on improving prefetching accu-
racy by learning heuristics such as correlations in temporal
or spatial locality, or by recognizing common irregular access
patterns. However, there are trade-offs between coverage and
accuracy within prefetcher design, where a prefetcher can issue
requests more aggressively with the aim of further reducing
the number of future cache misses, but this can result in a
reduction in accuracy due to the difficulty of predicting further
into the future and the increased number of prefetched lines
entering the cache.

The Perceptron-Based Prefetch Filter (PPF) [2] introduced a
mechanism to reduce the effects of this trade-off by allowing
an underlying prefetcher to aggressively suggest prefetches,
and then using a perceptron to learn and decide on which
prefetch requests should proceed to the cache hierarchy. The
original PPF presents an implementation that is closely tied
to the specific underlying prefetcher they evaluated. In this
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paper, we propose Sieve, which includes a generalizable
implementation of PPF that can be applied to any prefetcher.
We utilize default weights and features from information that
is available to any prefetcher. In this single-prefetcher setting,
we evaluate which features are the most useful and relevant
when applied to any prefetcher. This also allows us to analyze
how the filter performs differently when applied to different
prefetchers in order to determine the impact of the filter in the
overall decision-making process.

Furthermore, we enable Sieve to filter out prefetches from
several active prefetchers at once. This intuitively allows us
to benefit from each of the underlying prefetcher’s unique
contributions and increases our adaptability to a wide range
of workloads. In the multi-prefetcher setting, we experiment
with a single shared filter as well as one filter per prefetcher
to determine the effects of helpful cross-learning or potential
interference, given the storage trade-offs. We also experiment
with incorporating a sandboxing [9] approach into the multi-
prefetcher setting in order to determine how filtering improves
upon sandboxing in general.

To match the original custom-tailoring aspects of the PPF
implementation as described in the paper [2], Sieve allows for
an expanded custom feature input so underlying prefetchers
can still offer their own relevant characteristics to the filter.

Finally, we experiment with Sieve working in conjunction
with a replacement policy, using Sieve’s confidence as feed-
back for the replacement policy in order to guide insertion
decisions.

To summarize, this paper makes these main contributions:

o Generalize the perceptron-based prefetch filter to any sin-
gular underlying prefetcher as well as multiple underlying
prefetchers, in which case we can target several complex
access patterns at once.

« Introduce a novel combination of filtering and sandboxing
simultaneously, which outperforms sandboxing by itself.

o Allow for a single shared filter between multiple prefetch-
ers, or a unique filter per prefetcher.

¢ Perform multi-class cache insertion prediction by inte-
grating the confidence of the filter with the RRIP [4]
values of the SHiP replacement policy.

II. MOTIVATION AND RELATED WORK

In this section, we will discuss related work in the prefetch-
ing field and the two previous work that we primarily build
on to create Sieve. In Section 3, we will elaborate on how
the following work is incorporated into the implementation
and testing of Sieve. By first describing existing temporal and



spatial prefetching approaches, we will motivate why opti-
mizing the trade-off between coverage and accuracy through
sandboxing and filtering is necessary, and hence the motivation
behind Sieve’s unique combination of these two aggression-
tuning techniques.

A. Temporal Prefetchers

Temporal prefetching focuses on predicting what data will
be accessed after other data based on a sequence of events
regardless of how close the data are in memory. Often, this
comes in the form of correlating addresses and identifying
temporal streams. One example of a temporal prefetcher is
the Markov prefetcher, which transforms an address stream
into a Markov model in order to predict what reference will
follow a given reference [5].

B. Spatial Prefetchers

Spatial prefetching takes a different approach by instead
considering the spatial locality of accesses. For example, a
next-line prefetcher is a spatial prefetcher because when it
sees address A, it will prefetch address A + 1. This can be
generalized to an offset or stride prefetcher, which will learn
an offset/stride of A, so when it sees address A, it will prefetch
A + A. Often, a stride prefetcher will only issue a request if it
is somewhat confident that it will be useful, for example it may
wait to see address A and address A + A before requesting A
+2*A.

The Best Offset Prefetcher (BOP) is a stride prefetcher that
has a predefined list of offsets and then selects a singular
best offset from this list at run-time [8]. This prefetcher
maintains a table of the trigger address of recent requests,
and then searches through these addresses to determine if
the currently requested line would have been timely. In this
case, an offset’s corresponding score is incremented, and at
the end of a learning period, the offset with the highest score
is selected as the current prefetch offset.

The Signature Path Prefetcher (SPP) is another spatial
prefetcher that predicts the next delta, using a 12-bit com-
pressed signature of the previous 4 deltas to store history.
SPP extends this history to include the newly predicted delta
in order to generate a new signature that can be used to
make another prediction. This is part of SPP’s lookahead
mechanism, which allows SPP to deeply speculate. However,
to avoid losing accuracy for coverage, SPP also introduces a
confidence metric that is used to throttle the prefetching depth
dynamically.

C. Irregular Prefetchers

Up until now, we have discussed regular access patterns
that follow a heuristic such as temporal or spatial locality.
However, programs often exhibit irregular access patterns that
cannot be defined by these simple heuristics. In this case,
a prior work has proposed the Indirect Memory Prefetcher
(IMP), which aims to learn a specific, but common irregular
access pattern [11].

IMP targets indirect memory accesses of the form A[B[i]],
which exhibit little spatial locality but are common in graph

applications for accessing neighbor vertices. IMP captures this
indirect pattern by reading in advance the contents of B[i], as
that is the unpredictable part of this pattern, and then detecting
which accesses are reads to an array so it can compute the start
of the array and the size of an element in the array to predict
future indirect accesses.

In addition to these prefetching approaches, there are addi-
tional techniques such as sandboxing and filtering that aim to
improve prefetching performance.

D. Underlying Concept: Perceptron Prefetch Filter

All of the prefetchers we have described thus far suffer
from an inherent trade-off between coverage and accuracy. A
Perceptron-Based Prefetch Filter (PPF) [2] attempts to mitigate
this trade-off by allowing an underlying prefetcher to be more
aggressive and hence have higher coverage while a perceptron
filter approves or rejects the underlying prefetcher’s suggested
prefetches to avoid negatively impacting accuracy. The filter
considers several features of the prefetch request, and based
on the output confidence of the perceptron it will decide if the
prefetch request should actually be issued, and if so, whether
the prefetched line should go to the L2 cache or the LLC
depending on two confidence thresholds.

While PPF is theoretically applicable to any underlying
prefetcher, the original paper focused on a case-study with SPP
as the underlying prefetcher, and used features specific to SPP,
such as the lookahead depth, signature, and confidence counter
on top of tuning SPP to be more aggressive by discarding its
internal throttling mechanism. However, the core infrastructure
of PPF such as its weight tables, prefetch table, reject table,
and ability to prefetch into L2, LLC, or reject a suggested
prefetch still comprises an effective system that could be
modularized and adapted to a variety of prefetchers.

E. Underlying Concept: Sandbox

Program behaviors vary significantly across and within
workloads, so it is natural there is not a single prefetcher
that is ideal in every situation. All prefetchers are forced to
make a coverage and accuracy trade-off, especially because
many prefetchers aim to target a specific access pattern.
Existing prefetchers attempt to address this issue by integrating
adaptive characteristics to help the prefetcher dynamically
alter its prefetching behavior in conjunction with the program
evolution.

However, another approach to this problem is the concept of
sandboxing, originally introduced in Sandbox Prefetching [9].
This paper proposes evaluating multiple candidate prefetchers
round-robin style such that in every evaluation period, only
the best-performing prefetcher is allowed to issue requests to
main memory once its performance has surpassed a certain
threshold. In the original paper, the concept of sandboxing was
applied to sixteen candidate stride prefetchers with varying
offsets.

In the past, we have extended upon the original paper’s
sandboxing approach with our ++Sandbox design. In ++Sand-
box, we use advanced candidate prefetchers rather than simple



stride prefetchers, as well as an option of no-prefetching
if none of the candidates are performing above a certain
threshold. Additionally, in ++Sandbox, we evaluate all of the
candidate prefetchers simultaneously rather than in a round-
robin fashion as the original Sandbox proposes.

The central idea behind both sandboxing designs is to
continuously evaluate what the best prefetcher for the current
program phase is. However, both suffer from the same flaw
where during a phase change, the outgoing prefetcher may still
issue requests, hence polluting the cache and wasting memory
bandwidth until a new best prefetcher is confirmed.

III. SOLUTION: SIEVE

First, we introduce the high-level overview of Sieve, a
generalized PPF, and then we discuss the implementation-
specific details.

A. High-Level Overview

1) Generalized PPF: Sieve strips PPF down to its core
infrastructure that is applicable to all prefetchers. For exam-
ple, all prefetchers have access to program context features
useful for making predictions such as delta sequences, page
addresses, cache line offsets, and in some cases, the program
counter. Thus, these program context features are either used
directly or combined to generate features that our perceptron
uses for training and prediction. This is the key behind
generalizing PPF for application to any prefetcher.

However, as the case-study in the original PPF paper
motivates, the filter may benefit from additional computed
data and additional features available from the underlying
prefetcher. Thus, Sieve allows additional custom feature input
that is easily configured to provide the prefetch filter with addi-
tional features. These features will have corresponding weights
which are updated and factored into the filter’s decisions.

We describe the full design and implementation of the
custom feature input implementation in Section IV-3.

2) Multi-Prefetcher Configuration: Furthermore, Sieve sup-
ports single and multi-prefetcher configurations. For the multi-
prefetcher configuration, we support sharing a single filter
across all prefetchers, or one filter per prefetcher and experi-
mentally determine which design performs better.

The default multi-prefetcher configuration simply manages
all of the underlying prefetchers, allowing any of them to
suggest prefetches which are then filtered accordingly. How-
ever, we also experimented with a sandboxed version of Sieve
to allow for a novel, unique combination of filtering and
sandboxing.

The sandboxed multi-prefetcher configuration is conceptu-
ally very similar to sandboxing. However, the key advantage
that Sieve gains from both filtering and sandboxing compared
to only sandboxing is the ability to intelligently and dynami-
cally filter out the suggested prefetches suggested by the best-
performing prefetcher, rather than blindly issuing any prefetch
suggested by the best-performing prefetcher once its score
has surpassed a certain threshold. This helps to avoid wasting
memory bandwidth and polluting the cache.

3) Underlying Prefetchers: We chose to evaluate three
advanced candidate prefetchers - SPP, IMP, and BOP - as
Sieve’s underlying prefetchers. SPP was evaluated in the
original paper, so it serves as a baseline of comparison for
Sieve’s generalized PPF against the original paper’s PPF that
was custom-tailored to SPP. Furthermore, we wanted to extend
our evaluation to irregular access patterns with IMP as one of
the main benefits of activating multiple prefetchers at once
is that we can capture a variety of patterns simultaneously,
enjoying the benefits each new underlying prefetcher brings.
Lastly, we chose BOP because it is the winner of DPC-2, and
its goal of dynamically finding the best offset is reminiscent
of the original sandbox prefetcher.

B. Sieve Implementation

Sieve’s Generalizable PPF implementation uses the core
infrastructure described in the original PPF paper [2]. Each
feature has a corresponding weight table of 1,024 entries
mapping feature values to weights, where each entry is a 5-
bit saturating counters ranging from -16 to +15. Additionally,
we retain the 1,024-entry Prefetch Table storing accepted
prefetches and the 1,024-entry Reject Table storing rejected
prefetches, both of which use an LRU replacement policy. The
Prefetch and Reject Table both map the physical address of a
line to the feature values needed to re-index into the weight
tables for training.

1) Features Chosen: The key difference between Sieve’s
Generalizable PPF and the original PPF design is the specific
features we use that are agnostic of the underlying prefetcher.
We place an emphasis on incorporating features that are easily
available from the program context at the LLC level and useful
to most prefetcher designs. Many of our features are inspired
by the features used in the original PPF implementation and
the features explored in the creation of the Pythia prefetcher
[1].

However, the recent work striving to “kill the program
counter” (due to the practical difficulty of making the program
counter accessible to the cache hierarchy) has influenced us
to make our design flexible such that Sieve can be easily
configured to be used with or without program counter features
[6].

We tested additional features such as the cache line and
last four page offsets, but we experimentally found that they
were only a small factor in the decision-making process which
led us to remove them. The final list below is the pruned list
of features that we found to be useful and significant in the
perceptron filter’s decisions.

Program Counter Independent Features

« Physical Offset

« Physical Page Number

e Load Address Delta

o Last Four Load Deltas

o Physical Offset XOR Load Address Delta

Program Counter Based Features

¢ Program Counter (PC)
e PC XOR PCy >>1 XOR PCsy >> 2



e PC XOR Delta

2) Thresholds Chosen: The inference process is the same
as that of PPF. When a request is made, each feature indexes
into a table to retrieve a weight, and then all of the weights are
summed. If the sum is below a low threshold, then the prefetch
is rejected. If the sum is between the low and high threshold,
then the prefetch is sent to the LLC, otherwise, it is sent to
the L2 cache as we have high confidence in this prefetch’s
usefulness. After some experimental testing, we found that a
high threshold of 90 and a low threshold of 25 to be optimal,
matching the values used in the original PPF design.

Similarly, we mirror the training process in the original
PPF paper. Training is done on the L2 access stream, and
we also maintain a high and low training threshold to avoid
over-saturation of the weights while maintaining the training
speed. Through experimental testing, we chose 80 and -80 for
the high and low training thresholds respectively.

3) gem5 Specific Implementation Details: We simulate
Sieve in the gem5 simulator. To make Sieve applicable to
any underlying prefetcher in gemS5 specifically, we first made
Sieve and Sieve’s filter() method accessible to all prefetchers.
Then, to apply Sieve to a prefetcher, the only modification
that needs to be made is to simply call filter() whenever the
underlying prefetcher wishes to issue a prefetch to the main
memory. Inside Sieve’s filter() method, Sieve will determine if
the suggested prefetch should be accepted, and only then will
Sieve actually allow the prefetch to be sent out. Thus, in terms
of the software changes required, Sieve is very convenient and
accessible.

IV. ADDITIONAL EXPERIMENTATION

In this section, we will describe our additional experiments
and the relevant modifications made to support these experi-
ments.

1) Sandboxed Multi-Prefetcher: On top of the default
multi-prefetcher configuration, we support a sandboxed ver-
sion where we filter out the prefetches suggested by the best-
performing prefetcher. The motivation behind this experiment
is that sandboxing by itself will allow all prefetches to go
through once the best-performing prefetcher is activated, re-
gardless of whether or not its suggested prefetches are useful,
leading to wasted resources. Thus, we aim to improve upon
sandboxing by itself, and intuitively, by applying Sieve’s filter
on top of sandboxing, we are able to intelligently filter out
the suggested prefetches from the best prefetcher, a major
improvement over only using a static score threshold.

In terms of the implementation, we essentially created a
sandbox evaluating all of the underlying prefetchers, and then
once the best-performing prefetcher is determined and its
performance surpasses the score threshold, it is allowed to
suggest prefetches. At this point, Sieve’s filter is applied to
filter out suggested prefetches.

2) Shared Filter vs. Individual Filters: In this experiment,
we aimed to determine if a single shared filter across multiple
prefetchers or an individual filter per prefetcher would perform
better. The motivation behind using individual filters despite

the higher storage cost is that it may reduce aliasing between
the prefetchers potentially accessing the same table entries and
interfering with each other.

The main modification we had to make was to create a
filter associated with each underlying prefetcher. Thus, instead
of using one globally accessible Sieve for all prefetchers,
we created a Sieve that was only accessible to a specific
prefetcher, which that prefetcher would use for filtering its
prefetches.

3) Expanded Custom Feature Set: In this experiment, we
aimed to allow the underlying prefetchers to offer relevant
metadata as custom features to Sieve. As discussed earlier,
the motivation behind this experiment is that the filter may
benefit from this additional metadata to help it determine if a
prefetch is useful or not.

In order to support an expanded, custom feature set, we
had to add additional data structures. We decided to limit
the number of additional features to 3 because the original
PPF paper only added 3 features specific to SPP and we were
only planning on testing up to 3, but we should note that
our implementation is simple to scale up to more features as
necessary.

Thus, for the 3 additional features, we had to add 3
additional weight tables, 3 supplemental prefetch tables, and
3 supplemental reject tables. The core behavior of Sieve
remains the same, however, with each prefetch request, the
underlying prefetcher must also send values for the additional
features so they can be stored in the relevant additional weight
tables. Furthermore, depending on whether the prefetch is
accepted or rejected, the feature values must be placed in
the corresponding prefetch or reject table such that when
training occurs via the standard Prefetch and Reject table, the
supplemental prefetch and reject tables will also be accessed
to adjust the weights for the custom features in the additional
weight tables.

If a prefetcher does not wish to use additional custom
features, then these tables can be easily deactivated.

4) SHiP Integration: Several cache replacement policies at-
tempt to predict the re-reference interval of blocks in the cache
in order to determine their eviction priority [10]. However,
many of these policies end up making predictions that are
effectively binary. They choose between two possible RRIP
values (where RRIP refers to Re-reference Interval Prediction),
to assign to a cache line upon insertion, and then internally
manipulate and update this value as lines within the cache are
referenced. For example, the SHiP replacement policy uses the
insertion logic of ”if (SHCT[Signature] == 0) 3; else 2;” and
for promotion, it always sets the RRIP value to 0. For SHiP,
a smaller RRIP value indicates a near re-reference interval,
which larger RRIP values indicate more distant re-reference
intervals.

As such, we have identified an opportunity to use Sieve in
conjunction with the SHiP replacement policy in order to more
intelligently assign RRIP values. We propose transforming the
outputted confidence value of the perceptron filter into an
RRIP value. The intuition behind this idea is that a higher



confidence value means that we will insert into the L2 cache
over the LLC, implying that when the demand access occurs
for the same line, it will first search the L2 and find the line
rather than the LLC. Thus, we prefer this line having a smaller
re-reference interval, so we can assign it a 0 or 1 RRIP value
rather than a 2 or 3, which is the default for SHiP.

As for the implementation, we have an additional table
which is indexed into using the prefetch address to access the
confidence value (the sum of the weights) of the filter when it
was evaluating that prefetch. Then, if the confidence is above
80 or 70, then we predict a RRIP value of 0 or 1 respectively.

TABLE I
MEMORY HIERARCHY
Cache Level Specifications
L1I 32 KB, 8 ways
L1D 32 KB, 8 ways
L2 1 MB, 16 ways
LLC 8 MB, 16 ways

V. METHODOLOGY

As mentioned earlier, we follow the original PPF design in
training all of Sieve’s underlying prefetchers and the prefetch
filter itself on the L2 access stream, and we insert prefetches
into both the L2 and LLC cache. The LRU replacement policy
is used on all levels of the cache, except for in the SHiP
integration experiment where the SHiP replacement policy is
applied to the LLC.

Simulator: We use the execution-driven simulator gemsS.
Gem5 models a complex out of order CPU and memory
hierarchy, and is an “execute-in-execute” simulator, allowing
for wrong-path execution. We used gem5 in full-system mode,
simulating the interactions of the entire system and OS kernel
for a more realistic simulation. Table 1 details the memory
hierarchy configuration. We did not compare Sieve to the
original PPF paper’s results as they used a different simulation
technology called ChampSim that is less detailed than gem5
(for example, it does not support wrong path execution and it
models each instruction with a fixed latency), and therefore
would not serve as a fair baseline. Furthermore, there is
no public gem5 implementation of the original PPF paper
available to us for comparison.

Benchmarks: We perform analysis on 13 parallel-application
benchmarks from the GAP and PARSEC suites, targeting
irregular graph codes and scientific workloads.

Metrics: In our results, we report the percent IPC speedup
over a no-prefetching baseline. Additionally, we provide the
geometric mean of the percent IPC speedup when applicable
to show the overall mean speedup over no-prefetching.

VI. RESULTS

All results are single-core and normalized to no-prefetching
unless otherwise mentioned. For our naming convention in our
results, Sieve-S indicates Sieve is applied in a single-prefetcher
setting and Sieve-M indicates Sieve is applied in a multi-
prefetcher setting. For the multi-prefetcher setting, we always

test SPP, IMP, and BOP as the underlying prefetchers, so when
we refer to Sieve-M-ALL, this refers to this configuration for
brevity.

A. Single Prefetcher Comparisons

We first present our results for Sieve-S.

% IPC Improvement over No Prefetching for SPP and Sieve-S-SPP

SPP Sieve-S-SPP

7.50% 13.52% 23.39%

5.00%
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0.00%

%IPC Improvement
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Benchmarks

Fig. 1. SPP vs. Sieve-S-SPP

In Figure 1, we compare Sieve-S-SPP and SPP normalized
to no-prefetching, and we show a 3.00% IPC improvement
on average as measured by the geometric mean compared
to SPP’s 1.73%. We improve on every benchmark, even on
benchmarks where both SPP and Sieve-S-SPP perform worse
than no-prefetching such as blackscholes.

% IPC Improvement over No Prefetching for BOP and Sieve-S-BOP
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Fig. 2. BOP vs. Sieve-S-BOP

In Figure 2, we compare Sieve-S-BOP and BOP. We show
a 1.73% IPC improvement compared to BOP, which performs
1.63% worse than no-prefetching on these benchmarks on
average. This demonstrates that BOP may be aggressively
issuing prefetches if an offset’s score is high enough and a
prefetch is predicted to be timely, which may not take into
account enough factors to produce useful prefetches. Thus, this
is a prime example of when we are able to intelligently filter
out aggressive prefetches using the filter’s overall expanded
view of the program context.



% IPC Improvement over No Prefetching for IMP and Sieve-S-IMP
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Fig. 3. IMP vs. Sieve-S-IMP

In Figure 3, we compare Sieve-S-IMP and IMP. We show
a 3.08% IPC improvement compared to IMP, which shows
a 1.46% improvement over no-prefetching. This is our great-
est speedup over no-prefetching. This result makes sense as
the benchmarks from the GAP suite exhibit irregular graph
codes, and IMP should perform well on graph applications
by specifically learning the indirect memory access pattern
of A[B[i]] which is often used in graph-related algorithms to
find neighboring vertices. However, we note that on the non-
GAP workloads, our filter still improves performance as we
improve on all benchmarks except for bodytrack, where we
show a negligible decrease in performance of 0.11%.

Overall, in the single-prefetcher setting, we show that our
dynamic filtering of useless prefetches consistently improves
performance.

B. Multi Prefetcher Comparisons

Now, we present our results for Sieve-M in both single-
core and 4-core evaluations. For our naming convention, SF
indicates a single shared filter among prefetchers, IF indicates
individual filters (one filter per prefetcher), SB indicates sand-
boxed, and NSB indicates not sandboxed.

% IPC Improvement over No Prefetching for Shared Filter
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Fig. 4. Sieve applied to SPP, BOP, and IMP with a Single Shared Filter

Our single-core multi-prefetcher results are shown in Figure
4. In this configuration, Sieve shares a single filter among all

of the underlying prefetchers. Here, Sieve is able to achieve
a mean speedup of 3.39%, which performs better than when
Sieve is applied to any of the prefetchers by themselves. This
result demonstrates that Sieve benefits from more than one
underlying prefetcher as it is able to enjoy the benefits of
each prefetcher’s unique contributions simultaneously.

% IPC Speedup Over No Prefetching for Four-Core Sieve-M-SF-NSB-ALL
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Fig. 5. 4-Core Results for Sieve’s Single Shared Filter

Our 4-core results for the multi-prefetcher configuration
with a single shared filter are shown in Figure 5. Once again,
we show improvement on every benchmark with a geometric
mean speedup of 4.15%.

C. Sandboxing Experiment Analysis

Now, we present our findings of experimenting with our
unique combination of sandboxing and filtering compared to
only sandboxing. With regards to our naming convention,
these results all use a single shared filter, so we refer to this
configuration as Sieve-M-SF-SB-ALL. We show the results
of sandboxing with individual filters in Section VI-D.

% IPC Improvement over No Prefetching for Sieve-M-SF-SB-ALL

Sieve-M-SF-SB-ALL Sieve-M-SF-NSB-ALL ++Sandbox

250% 3% 25.89%
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Fig. 6. Sieve’s Single Shared Filter Results with Sandboxing

We find that Sieve-M-SF-SB-ALL’s IPC improvement of
2.72% outperforms ++Sandbox which only shows an IPC
improvement of 1.73%. Thus, our unique combination of both
filtering and sandboxing outperforms only sandboxing, and
this confirms our hypothesis that the filtering mechanism can
prevent useless prefetches from the best-performing prefetcher.
This demonstrates that accepting any prefetch from the best-



performing prefetcher once its score has surpassed a threshold
is not enough, and a filter can further improve performance.

However, our (geometric) mean speedup of 2.72% is still
lower than 3.39% speedup without sandboxing. This is likely
because in the sandboxing approach, only the best-performing
prefetcher can suggest prefetches, whereas, without sandbox-
ing, any of the underlying prefetchers can suggest prefetches.

Intuitively, if any of the underlying prefetchers can suggest
prefetches, then we can capture more than one type of access
pattern at once. For example, suppose we have a spatial
prefetcher and an irregular access prefetcher as our underlying
prefetchers. In that case, theoretically, we are able to predict
spatial and irregular access patterns simultaneously, in contrast
to sandboxing, where we are limited to the pattern of the
best-performing prefetcher targets. This benefit is especially
strong when program phase changes occur because in the non-
sandboxed version of Sieve, the best prefetcher for the incom-
ing phase can have its prefetches be issued and contribute to
improving program performance right away, instead of having
to endure the transition between active prefetchers like in a
sandboxed environment.
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Fig. 7. 4-Core Results for Sieve’s Single Shared Filter with Sandboxing

In Figure 7, we present our 4-core results for Sieve-M-
SF-SB-ALL, which do not perform well with a marginal
improvement of 1.33% speedup overall compared to the 4-
core results for Sieve-M-SF-NSB-ALL, which attain a 4.15%
speedup. First, we suspect that the sandboxed version performs
worse than the non-sandboxed version for the reasons ex-
plained above for the single-core results. This problem of only
considering prefetches from the best-performing prefetcher is
likely exacerbated in a 4-core simulation because the best
prefetcher is likely not the same across cores.

Second, we suspect that our 4-core results may not be
achieving their full potential for both the sandboxed and non-
sandboxed versions. Thus, Sieve-M-SF-NSB-ALL’s results
may also fall short of their true potential, but performance
still improved due to the benefits of filtering. However, for
the sandboxed version, any performance gain from filtering
was still not enough to hide the key weakness of ++Sandbox
in multi-core environments. It is likely that not all four cores
will have the same best prefetcher for their current task, so

it is likely that some of the cores are running a suboptimal
prefetcher while also causing aliasing within the sandbox
prefetcher selection. We discuss the potential of remedying
this problem with a one-filter-per-core solution as future work
in Section VII-B.

D. Shared vs. Individual Filters Experiment Analysis

In this section, we present our findings for our experiment
comparing a single shared filter among multiple prefetchers
and an individual filter per prefetcher. In Figure 8, we compare
the non-sandboxed Sieve filter configurations, and in Figure
9, we compare the corresponding sandboxed Sieve configura-
tions.

% IPC Improvement over No Prefetching for Shared vs. Individual Filter
Sieve-M-SF-NSB-ALL Sieve-M-IF-NSB-ALL

10.00% 25.89%26.03%

7.50%
5.00%
3.39% 3.25%

2.50%

0.00% r— —

% IPC Improvement over No Pref

-2.50%

Benchmarks

Fig. 8. Shared Filter vs. Individual Filter
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Fig. 9. Sandboxed: Shared Filter vs. Individual Filter

Regardless of sandboxing, the performance is very similar.
However, the shared filter configuration overall performs better
than the individual filter configuration with an IPC speedup of
3.39% compared to 3.25% for non-sandboxed Sieve, and a
speedup of 2.72% compared to 2.68% for sandboxed Sieve.
This intuitively makes sense as regardless of the filter config-
uration, a good or bad prefetch should be identifiable by any
filter.

Sieve with multiple active prefetchers tends to perform
especially well on graph based benchmarks such as bc, pr,
and bfs regardless of the configuration, likely due to the
ability of the component IMP prefetcher to excel at this



task. Meanwhile, lower performance is seen on raytrace and
streamcluster, but these tend to be weaker benchmarks for the
underlying prefetchers as well so it is unlikely that a filtered
version would see much of an improvement.

We observe that on benchmarks with repetitive actions
suited to a specific prefetcher, the individual filter configu-
ration performs better. However, when a benchmark alternates
behavior, a single shared filter produces the best results.

Under an individual filter configuration, feedback from
training is only applied to the filter of the prefetcher which
requested the line, leading to slower training than a shared
prefetcher design as some underlying prefetchers will receive
less training than others. While this can prevent aliasing, the
slower training proves to be more detrimental in cases where
the optimal prefetching policy may vary over the program
phases. We observe that it is more beneficial to use a single
shared filter which is always trained and ready to review
suggested prefetches, rather than trying to switch prefetchers
and then needing to warm up that prefetcher’s prefetch filter
to the current program state.

E. Custom Feature Input Experiment Analysis

In this section, we demonstrate our findings for a custom-
tailored version of Sieve applied to SPP, which we refer to as
Sieve-S-SPP-Custom.
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Fig. 10. Sieve applied to SPP with a Custom Expanded Feature Set

In this experiment, we expanded SPP by including its Con-
fidence, Signature, and Lookahead Depth as additional custom
features, matching the original additional input provided in the
original PPF paper [2]. We find that the custom input results
in a speedup of 3.76% compared to 3.00% for Sieve-S-SPP
without custom input.

This performance improvement confirms our hypothesis that
providing the filter with additional available metadata that
the prefetcher uses to make prediction decisions can help
provide the filter with an expanded view of the overall program
and prefetcher interactions. Although Sieve is generalized to
any prefetcher, it can easily be adjusted for additional input
that improves the filter’s approval decisions and therefore the
overall performance.

F. SHIP RRPV Analysis

We refer to the version of Sieve working in conjunction with
SHiP applied to SPP as Sieve-S-SPP-SHiP. We compare this

to a baseline of SPP by itself, as well as a baseline of Sieve-
SPP running with SHiP as the replacement policy, which is
referred to as “Sieve-SPP with SHiP” in Figure 11.
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Fig. 11. SHiP Integration

In Figure 11, we observe a marginal improvement of 3.07%
for Sieve-S-SPP-SHiP compared to 3.05% from running
Sieve-S-SPP with SHiP as the replacement policy.

One reason we only improve marginally could be because
we only alter the insertion RRIP value in the LLC, but many
of our prefetches are issued to the L2 cache. In future work,
we may concretely determine the ratio of prefetches issued to
the L2 and LLC, but for now, we estimate that the number of
prefetches issued to the LLC is low, so there was not a large
room for improvement in the LLC to begin with.

Furthermore, we suspect that while we were able to im-
prove, the correlation between the filter’s confidence for insert-
ing in the L2 or LLC and a near-immediate re-reference inter-
val of the prefetched line may be lower than we thought, so the
improvement was less drastic than expected. In future work,
we may experiment with assigning more distant re-reference
intervals, as we have only experimented with assigning more
near intervals thus far.

VII. FUTURE WORK
A. Integrating Sandbox Score

Each prefetcher in the sandbox has an associated score
corresponding to its number of useful prefetches. We plan
on integrating this score as feedback to the perceptron filter
for training purposes. The intuition behind this idea is that a
prefetcher in the sandbox with a high score must have issued
many useful prefetches, so then the filter should be more
confident in that particular prefetcher. One concern with this
approach is that it may result in “double-training” the filter,
or perhaps introducing a confirmation bias if implemented
incorrectly.

B. Custom Tailored Sieve-BOP

Similar to the custom-tailored PPF-SPP implementation, in
the future we would like to experiment with a custom-tailored
Sieve-BOP implementation. We are considering tuning the



underlying BOP prefetcher to be more aggressive by tuning
its score reward mechanism, testing more offsets including
negative offsets, and lowering or eliminating the BADSCORE
threshold that prevents prefetching.

C. One Filter Per Core

Currently, our filter is not core-aware and this is reflected
in our multi-core results. We plan to experiment with an
implementation where we implement one filter per core so
that the filter weights do not suffer from aliasing from different
processes in different cores accessing and updating the same
weights.

VIII. CONCLUSION

The Sieve prefetch filter shows significant promise in im-
proving coverage without sacrificing accuracy, building on
the previous work of the perceptron-based prefetch filter. In
this paper, we provide the first generalized implementation of
a prefetch filter that can be applied to a single underlying
prefetcher or multiple underlying prefetchers at once.

Our generalized Sieve does not sacrifice customizability. We
allow underlying prefetchers to easily and conveniently offer
their own metadata to the filter as additional custom features,
and show that this improves the filter’s performance when
applied to SPP, mirroring the case-study from the original
perceptron-based prefetch filter work.

In particular, we show that multiple underlying prefetchers
with a single shared filter is the optimal configuration as
it enjoys each underlying prefetcher’s unique contributions,
allowing us to target several complex access patterns at once.
This is in contrast to sandboxing approaches, which are limited
to the prefetches of the best-performing prefetcher only. We
also demonstrate that our unique and novel combination of
filtering and sandboxing outperforms only sandboxing, and
that filtering is a superior approach to the static score threshold
currently used in sandbox prefetching.

Finally, we explore using our filter in conjunction with
a cache replacement policy to guide insertion decisions for
multi-class eviction priorities.

Sieve outperforms all of its underlying prefetchers in single-
and multi-prefetcher settings. Sieve achieves a speedup of up
to 3.08% in a single-prefetcher setting and a speedup of 3.39%
in a multi-prefetcher setting, over no-prefetching. Furthermore,
in a 4-core multi-prefetcher setting, Sieve achieves a speedup
of 4.15% over no-prefetching.
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